
Fermion mixing in quasifree states

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2003 J. Phys. A: Math. Gen. 36 L69

(http://iopscience.iop.org/0305-4470/36/4/101)

Download details:

IP Address: 171.66.16.89

The article was downloaded on 02/06/2010 at 17:06

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/36/4
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 36 (2003) L69–L79 PII: S0305-4470(03)52207-7

LETTER TO THE EDITOR

Fermion mixing in quasifree states

K C Hannabuss and D C Latimer1

Mathematical Institute, 24-29, St Giles’, Oxford OX1 3LB, UK

Received 7 August 2002, in final form 4 December 2002
Published 15 January 2003
Online at stacks.iop.org/JPhysA/36/L69

Abstract
Quantum field-theoretic treatments of fermion oscillations are typically
restricted to calculations in Fock space. In this letter, we extend the oscillation
formulae to include more general quasifree states, and also consider the case
when the mixing is not unitary.

PACS numbers: 14.60.Pq, 03.65.Fd, 03.70.+k

1. Introduction

The theoretical underpinning for fermion oscillations was developed decades ago [8], but
only recently have terrestrial and solar neutrino experiments begun to substantiate this work
[32, 33], and experimental evidence for oscillations has led to renewed interest in the theory.
Current quantum field-theoretic treatments of the fermion oscillation phenomena [1, 2, 9–19,
23, 31] have brought about modifications to the oscillation formula developed in [8], adding
terms depending on the sum of energies rather than their difference. Although these new
results are based on calculations made in fermion Fock space, they rely on modifications
suggested by physical considerations. In this letter, we generalize the oscillation formula to
general quasifree states, and show that the additional terms occur naturally in that setting.
Our result contains the known formula for Fock states as a special case, but also includes
other physical scenarios such as the thermal (KMS) state, or situations in which polarization
of the vacuum has occurred. The oscillation formula for the thermal state could be a better
approximation for fermions at nonzero temperature in some extreme physical situations, such
as the early universe. At the end of the letter, we shall also consider the case when the mixing
operator is not unitary and show that it leads to similar effects.

From a mathematical point of view the main obstacle to such calculations lies in the fact
that we wish to calculate the oscillatory behaviour of correlations between projections onto
flavour states (such as the νe and νµ states) at different times, but the dynamical behaviour is
simplest in states with definite masses. These are distinct from the states of definite flavour to
which they are related by a non-trivial mixing transformation.
1 Present address: Department of Physics and Astronomy, Vanderbilt University, VU Station B 1807, Nashville,
TN 37235, USA.
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The fermionic anticommutation relations (CAR) can be written in terms of smeared
creation operators

c(w) =
∫

w(x)a∗(x) dx

(smeared with test functions w, z in the complex inner product space of wavefunctions on R3

with values in the product of Dirac spinors V and an N-dimensional space V describing the
various flavour states) as

[c(w)∗, c(z)]+ = 〈w, z〉 [c(w), c(z)]+ = 0.

It is well known [25] that the (abstract) algebra defined by these relations has many inequivalent
representations by operators in Hilbert space, and the study of the interrelations between a
selection of these forms the main focus of this letter. We shall mainly be concerned with
quasifree representations of the CAR algebra which generalize the standard Fock and Dirac–
Fock representations. (The Fock representations themselves have been studied, for example,
in [9, 10, 29, 34].) Quasifree representations are those in which the Wick determinant formula
expresses the n-point correlation functions in terms of the two-point correlation functions just
as in Fock space. As well as appearing for thermal states of systems, quasifree states often
arise in situations where the vacuum is polarized, and so allow us to treat more complicated
field-theoretic effects whilst avoiding the detailed models. A well-known technique of Powers
and Størmer [35] and Araki [3] tells us how to construct any quasifree representation of
CAR(W) as the composition of an injection of W into W ⊕ W with a Fock representation of
CAR(W ⊕ W), and so we shall concentrate on Fock representations.

This letter presents a purely algebraic field-theoretic treatment of neutrino mixing. There
are alternative approaches motivated by an argument that inequivalent representations produce
differences too small to yield observable effects in current experiments, in particular, those
which include model sources and detectors, often using wave packets [6, 7, 20–22, 24, 26–28,
30]. We believe that it should also be possible to include models of the source and detector
within our field-theoretic treatment and hope to return to that at a future date. (We also
note that Fell’s theorem [24] says that the correlation functions in any representation can
be approximated arbitrarily closely by an appropriate state in a fixed faithful representation.
Unlike Fock states, most of the quasifree states which we shall discuss are faithful.)

2. The one-particle space

To establish notation we first recall that for Dirac particles the elements of W = Wm can be
thought of as the initial data for the Dirac equation

ih̄
∂w

∂t
= HDw

where the Dirac Hamiltonian HD is given in terms of momentum operators P by

HD = c(α ⊗ P + β ⊗ Mc)

with α = (α1, α2, α3) and β satisfying the Clifford algebra relations

αjβ + βαj = 0 β2 = 1 αjαk + αkαj = 2δjk j, k = 1, 2, 3

and M a positive operator on V whose eigenvalues give the masses m1,m2, . . . ,mn. (In what
follows, we shall omit the tensor product and write βM for β ⊗ M , etc.)

Choosing a basis in which the mass matrix M is diagonal, we refer to the solutions of the
Dirac equation as mass eigenstates. We define

P± = 1
2 (1 ± HDE−1)
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where E is the positive square root of the positive operator H 2
D = (|P|2 +M2c4). (We shall also

use Ej for the value when in the eigenstate with mass mj .) The P± are idempotent, self-adjoint
and P±HD = ±EP±; that is, they are the positive and negative energy projections on W . They
also determine the mass representation of the CAR algebra with creation operators cm and a
Dirac–Fock vacuum vector �m which satisfies the Dirac condition that, for every w in W ,

cm(P+w)∗�m = 0 = cm(P−w)�m.

When we study the flavour space Wf we work rather with a flavour representation cf in
a standard Fock space with a flavour vacuum �f satisfying cf (w)∗�f = 0 for all w ∈ Wf .

3. General mixing transformations

In our previous letter, we studied what happened when the mass and flavour spaces Wm and Wf

were isomorphic by a unitary mixing transformation T, but here we shall consider more general
situations such as orthogonal mixing transformations, and Powers–Størmer transformations
which enable us to realize quasifree states on Fock spaces. When T is unitary the spaces Wm

and Wf can be identified, but, for orthogonal T, when Wm and Wf are the same as real spaces
but have different complex structures, it is simpler to treat them as distinct.

It will be convenient to consider more generally the case when we have two inner product
spaces Wj and Wk and a map Tjk : Wk → Wj which is orthogonal in the sense that it preserves
the real part of the inner product: for all w, z ∈ Wk ,

〈z,w〉 + 〈w, z〉 = 〈Tjkz, Tjkw〉 + 〈Tjkw, Tjkz〉.
For any real-linear operator Tjk on Wk we define the complex linear map ajk = 1

2 (Tjk −
JjTjkJk) and the antilinear map bjk = 1

2 (Tjk + JjTjkJk) where Jj and Jk simply indicate
multiplication by i on Wj and Wk , respectively. The Fock space creation and annihilation
operators cj and ck are linked by

ck(w) = cj (ajkw) + cj (bjkw)∗

and

cj (Tjkw) + cj (Tjkw)∗ = cj (ajkw) + cj (bjkw)∗ + cj (ajkw)∗ + cj (bjkw)

for all w ∈ Wk , where ajk and bjk are the Bogoliubov maps just defined. To be consistent
with the anticommutation relations in both Wj and Wk we have the orthogonality relations

a∗
jkajk + b∗

jkbjk = 1 = ajka
∗
jk + bjkb

∗
jk a∗

jkbjk + b∗
jkajk = 0 = ajkb

∗
jk + bjka

∗
jk.

These are just the conditions that T be orthogonal. Since these transformations mix creation
and annihilation operators it is expedient to introduce a more succinct notation. We combine
creators and annihilators in the row vector c̃j = (cj c∗

j ), and introduce

�jk =
(

ajk bjk

bjk ajk

)
to obtain

c̃k(w̃) = c̃j (�‘jkw̃) for w̃ =
(

w1

w2

)
.

One advantage of dealing with the general situation is that there is an obvious composition
law

�jl = �jk�kl
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obtained by writing the relationship between creation operators on Wj and Wl directly and
through the intermediate space Wk . The orthogonality properties of the Bogoliubov maps can
also be interpreted as telling us that ajk = a∗

kj , and bjk = b∗
kj , or

�jk = �∗
kj .

(This is closely related to Araki’s self-dual construction [3].)
Instead of the vacuum states described above we shall use a more general quasifree state ω

for the CAR algebra. As noted above, this is determined by the two-point correlation functions
which define a complex linear operator R and a conjugate linear operator S by

ω[c(w)∗c(z)] = 〈w,Rz〉 ω[c(w)c(z)] = 〈Sw, z〉
where R = R∗, 0 � R � 1 and S = −S∗, [3–5]. We note that if K = i(2R − 2S − 1) defines
a complex structure on W , that is K2 = −1, then the state ω is a Fock state for some choice
of complex structure.

The GNS construction guarantees the existence of a representation π : CAR(W) → H
containing a cyclic vector � ∈ H such that ω(b) = 〈�,π(b)�〉 for any b ∈ CAR(W).
The representation π over H can be expressed in terms of a Dirac–Fock representation of
CAR(W+ ⊕W−), where W+ and W− are both isomorphic to W . The representation in question
takes (w+, w−) ∈ W+ ⊕ W− to c+(w+) + c−(w−) and the w+ with a Dirac-type vacuum �

which is killed by the annihilators c+(w+)
∗, and the creators c−(w−). This means that

〈c+(w)�, c+(z)�〉 = 〈w, z〉 〈c−(w)∗�, c−(z)∗�〉 = 〈z,w〉
and all other two-point correlation functions vanish. Suppressing the representation map, and
writing c = π ◦ c, the required representation of CAR(W) is given by

c(w) = 1√
2
(c+(a+w) + c+(b+w)∗ + c−(a−w) + c−(b−w)∗)

where a± are linear and b± are antilinear and satisfy the orthogonality relations a∗
±a± +

b∗
±b± = 1, a∗

±b± + b∗
±a± = 0. (It is easy to check that this does provide a representation of

CAR(W).)
When W = Wj we shall write a±j and b±j for the Bogoliubov maps to give

cj (w) = 1√
2
(c+(a+jw) + c+(b+jw)∗ + c−(a−jw) + c−(b−jw)∗).

We adopt the summation convention that when an index s can range over different values
{+,−} and is repeated (as in expressions such as cs(asjw) or cj (ajsaskw)) one sums over all its
values and divides by

√
2. Then the above expression can be abbreviated to c̃j (w̃) = c̃s(�sj w̃),

and it is easy to see that our earlier rules for compositions apply. Thus a state which gives a
quasifree representation for the label j does the same for the label k.

With this notation we have c̃j (w) = c̃s(�sjw). When applied to �, only certain of the
components are nonzero. For instance,

cj (w)� = 1√
2
(c+(a+jw) + c+(b+jw)∗ + c−(a−jw) + c−(b−jw)∗)�

= 1√
2
(c+(a+jw) + c−(b−jw)∗)�

and, similarly,

cj (w)∗� = 1√
2
(c+(b+jw) + c−(a−jw)∗)�.

Reversing the expansion we obtain

cj (w)� = 1
2 (cj ((aj+a+j + bj−b−j )w) + cj ((aj−b−j + bj+a+j )w)∗)�

and

cj (w)∗� = 1
2 (cj ((aj+b+j + bj−a−j )w) + cj ((aj−a−j + bj+b+j )w)∗)�
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which may be combined as

c̃j (w̃)� = c̃j

(
�0

j w̃
)
� where �0

j =
(

R S∗

S R′

)

where R = 1
2 (aj+a+j + bj−b−j ), S = 1

2 (aj+b+j + bj−a−j ), S
∗ = 1

2 (aj−b−j + bj+a+j ) (which
the orthogonality relations show is the adjoint of S) and R′ = 1

2 (aj−a−j + bj+b+j ) = 1 − R

(by the orthogonality relations). In effect �0
j is the projection on Wj associated with �. We

easily calculate that

〈cj (z)�, cj (w)�〉 = 〈cj (z)�, (cj (Rw) + cj (Sw)∗)�〉 = 〈z,Rw〉
so that R is the correlation operator already introduced, and similarly for S.

Whenever U is a unitary transformation of Wj , there is a unitary map πj(U) implementing
U in the sense that

πj(U)cj (w)πj (U)−1 = cj (Uw)

for all w ∈ Wj . Since πj(U) is unitary there is a similar relation for the annihilator cj (w)∗

and we combine these as

πj(U)̃cj (w̃)πj (U)−1 = c̃j (Ũ w̃)

where

Ũ =
(

U 0
0 U

)
.

(When j refers to flavour this gives a representation of the group of flavour transformations.)
We shall also need the infinitesimal version of this which arises from taking the unitary

exp(isP ) and differentiating at s = 0 to obtain

[π ′
j (P ), cj (w)] = −i

d

ds
πj (e

isP )cj (w)πj (e
isP )−1|s=0 = −i

d

ds
cj (e

isP w)|s=0 = cj (Pw).

When P = 1, we can regard N = π ′
f (1) as the number operator, and when P = Pλ, the

projection onto the states of flavour λ, then Nλ = π ′
f (P λ) counts the number of flavour λ

particles.
For our calculations we need to know the effect of πj(U) on ck(w) for different j and k.

We, therefore, note that

πj(U)̃ck(w̃)πj (U)−1 = πj(U)̃cj (�jkw̃)πj (U)−1

= c̃j (Ũ�jkw̃)

= c̃k(�kj Ũ�jkw̃)

= ck((akjUajk + bkjUbjk)w) + ck((bkjUajk + akjUbjk)w)∗.

It is convenient to introduce the abbreviation Ũ k = �kj Ũ�jk , and write

πj(U)̃ck(w̃)πj (U)−1 = c̃k(Ũ kw̃)

(it being understood that U is an operator on Wk). We have the explicit formula

Ũ k =
(

uk vk

vk uk

)
with

uk = akjUajk + bkjUbjk vk = akjUbjk + bkjUajk.
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4. Correlation functions

The correlation functions which we first wish to calculate have the form

〈cf (z)�, πm(U)∗π ′
f (P )πm(U)cf (w)�〉

where P projects onto a flavour state, U = exp(−itHD/h̄) gives the time evolution and �

defines a quasifree state. This can be easily found by differentiating the more tractable

〈cf (z)�, πm(U)∗πf (D)πm(U)cf (w)�〉
where D = exp(isP ).

Gathering together our various comments we calculate that

πm(U)∗πf (D)πm(U)̃cf (w̃)� = πm(U)∗πf (D)πm(U)̃cf

(
�0

f w̃
)
�

= c̃f

(
Ũ

∗
f D̃Ũf �0

f w̃
)
πm(U)∗πf (D)πm(U)�.

We now differentiate this to get

iπm(U)∗π ′
f (P )πm(U)cf (w)�

= c̃f

(
Ũ

∗
f iP̃ Ũ f �0

f w̃
)
� + ĩcf

(
Ũ

∗
f Ũf �0

f w̃
)
πm(U)∗π ′

f (P )πm(U)�

= c̃f

(
�0

f Ũ
∗
f iP̃ Ũ f �0

f w̃
)
� + ĩcf

(
�0

f w̃
)
πm(U)∗π ′

f (P )πm(U)�.

Inserting this expression into the inner product, but with w̃ = (
w

0

)
, we obtain

〈cf (z)�, πm(U)∗π ′
f (P )πm(U)̃cf (w̃)�〉 = −i

〈
cf (z)�, c̃f

(
�0

f Ũ ∗
f iP̃ Ũ f �0

f w̃
)
�

〉
+

〈
cf (z)�, c̃f

(
�0

f w̃
)
πm(U)∗π ′

f (P )πm(U)�
〉
.

In each inner product we take the creation operators from the right to an adjoint acting on the
left. There the factor of �0

f ensures that the adjoint annihilates �, so that we simply get

〈cf (z)�, πm(U)∗π ′
f (P )πm(U)̃cf (w̃)�〉 = −i

〈[
c̃f

(
�0

f Ũ∗
f iP̃ Ũ f �0

f w̃
)∗

, cf (z)
]

+�,�
〉

+
〈[
c̃f

(
�0

f w̃
)∗

, cf (z)
]

+�,πm(U)∗π ′
f (P )πm(U)�〉.

The anticommutators can now be written explicitly in terms of inner products. For example,
the second gives[

c̃f

(
�0

f w̃
)∗

, cf (z)
]

+ = [cf (Rw)∗ + cf (Sw), cf (z)]+ = 〈Rw, z〉.
The first requires a more detailed calculation, but we require only the first entry in
�0

f Ũ
∗
f iP̃ Ũ f �0

f w̃:

(1 0)

(
R S∗

S R′

) (
u∗

f v∗
f

v∗
f u∗

f

) (
iP 0
0 iP

) (
uf vf

vf uf

) (
R S∗

S R′

) (
w

0

)

= (R S∗)
(

u∗
f v∗

f

v∗
f u∗

f

)(
iP 0

0 iP

) (
uf vf

vf uf

) (
Rw

Sw

)
.

Recalling that v is conjugate linear, the product of the three middle matrices can be written as(
u∗

f v∗
f

v∗
f u∗

f

) (
iP 0
0 iP

) (
uf vf

vf uf

)
= i

(
F G

G F

)
where

F = u∗
f Puf − v∗

f Pvf G = u∗
f Pvf − v∗

f Puf .



Letter to the Editor L75

Using the fact that R = R∗ and recalling the conjugate linearity of S, this enables us to rewrite
the first commutator as

(R S∗) i

(
F G

G F

) (
Rw

Sw

)
= i(R∗FR + R∗GS − S∗GR − S∗FS)w.

Combining the expressions for the two commutators we obtain

〈z, (R∗FR + R∗GS − S∗GR − S∗FS)w〉 + 〈z,Rw〉〈�,πm(U)∗π ′
f (P )πm(U)�〉.

The physically interesting quantity is the expected number of flavour λ particles 〈Nλ(t)〉µ,
in a state where one flavour µ particle has been created a time t earlier out of the ‘vacuum’
�. This can be obtained by taking P = Pλ, z = w = Pµφj ,U = Vt = exp(−iHDt/h̄)

above, and then summing as φj runs over an orthonormal basis of W , to get (with Fλ and Gλ

denoting F and G when we take P = Pλ)∑
j

〈cf (Pµφj )�, πm(Vt )
∗π ′

f (P )πm(Vt)cf (Pµφj )�〉 = tr[(R∗FλR + R∗GλS − S∗GλR

− S∗FλS)Pµ] + tr[RPµ]〈�,πm(Vt)
∗π ′

f (P λ)πm(Vt )�〉.
The last inner product is just the vacuum expectation of Pλ and should be subtracted (since
we are only interested in the enhancement produced by creating a flavour state), and we must
also divide by the norm of the state tr[RPµ] to get

〈Nλ(t)〉µ = tr[(R∗FλR + R∗GλS − S∗GλR − S∗FλS)Pµ]

tr[RPµ]
.

The expected total flavour number 〈N(t)〉µ is obtained by summing over λ (which means
that Fλ and Gλ are replaced by u∗

f uf − v∗
f vf and u∗

f vf − v∗
f uf , respectively). The ratio

〈Nλ(t)〉µ/〈N(t)〉µ then gives the proportion of flavour λ particles. In the next two sections we
shall look at two special cases of this formula.

During the preparation of this letter an interesting preprint appeared [19] which
investigates the CP violation in three flavour mixing. We note that in our context the
transition probability for antiparticles can be calculated by using annihilation in place of
creation operators, which leads to the replacement of R by R′ = 1 − R and of S by S∗ = −S,
to give

〈Nλ(t)〉µ = tr[((1 − R)∗Fλ(1 − R) − (1 − R)∗GλS + S∗Gλ(1 − R) − S∗FλS)Pµ]

tr[R′Pµ]
.

5. Unitary mixing in quasifree states

The first case which we shall consider is for a unitary mixing matrix but in a quasifree state.
When the mixing transformation is given by a unitary operator T, we have uf = T UT ∗ and
vf = 0, so that Gλ = 0 and Fλ = T V ∗

t T ∗PλT VtT
∗. The expression then simplifies to

〈Nλ(t)〉µ = tr[(R∗T V ∗
t T ∗PλT VtT

∗R − S∗T V ∗
t T ∗PλT VtT

∗S)Pµ]

tr[RPµ]
.

(This formula can be easily checked in the case of a thermal state ωβ at absolute temperature
(kβ)−1, where k is Boltzmann’s constant (see the appendix), and gives the known values
R = (1 + e−βHD)−1 and S = 0, in agreement with our general formula.)

We note that summation over λ gives

〈N(t)〉µ = tr[(R∗T V ∗
t T ∗T VtT

∗R − S∗T V ∗
t T ∗T VtT

∗S)Pµ]

tr[RPµ]
= tr[(R∗R − S∗S)Pµ]

tr[RPµ]
which is, as one would hope, independent of time.
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In fact for states invariant under global U(1) transformations of W , we always have S = 0
[4, 5], and then

〈Nλ(t)〉µ = tr[R∗T V ∗
t T ∗PλT VtT

∗RPµ]

tr[RPµ]
.

To achieve a more explicit formula we take R = Tρ(HD)T ∗ to be a function of the
Hamiltonian, where ρ(x) is a real function of the real variable x, defined everywhere except,
perhaps, zero. Both the Dirac and KMS states satisfy this restriction. This gives

〈Nλ(t)〉µ = tr[Tρ(HD)V ∗
t T ∗PλT Vtρ(HD)T ∗Pµ]

tr[TρT ∗Pµ]
= tr[ρ(HD)V ∗

t T ∗PλT Vtρ(HD)T ∗PµT ]

tr[ρT ∗PµT ]
.

Performing some preliminary calculations, we have

ρ(HD)V ∗
t = ρ(HD) eiHDt/h̄(P+ + P−)

= ρ(E) eiEt/h̄P+ + ρ(−E) e−iEt/h̄P−
= 1

2 [ρ(E) eiEt/h̄ + ρ(−E) e−iEt/h̄] + 1
2 [ρ(E) eiEt/h̄ − ρ(−E) e−iEt/h̄](P+ − P−)

and, in particular,

T ∗RT = 1
2 [ρ(E) + ρ(−E)] + 1

2 [ρ(E) − ρ(−E)](P+ − P−).

To condense our notation, we define

σj = ρ(Ej ) eiEj t/h̄ + ρ(−Ej) e−iEj t/h̄

δj = ρ(Ej ) eiEj t/h̄ − ρ(−Ej) e−iEj t/h̄

γj = ρ(Ej ) + ρ(−Ej)

εj = c(α · P + βmjc)/Ej .

We note that εj has trace zero but

tr(εj εk) = (|P|2c2 + mjmkc
4)/(EjEk) = Sjk.

We also know that in terms of the mass basis the components of Pλ are

(T ∗PλT )jk = T ∗
jλTλk = T λjTλk.

With this notation the numerator in the oscillation formula is

1

4

N∑
j,k=1

tr[(σj + δj εj )T
∗PλT (σ k + δkεk)

∗T ∗PµT ] =
N∑

j,k=1

[σjσ k + δj δkSjk]T λjTλkT µkTµj

= 1

2

N∑
j,k=1

[(σjσ k + δj δk)(1 + Sjk) + (σjσ k − δj δk)(1 − Sjk)]T λjTλkT µkTµj .

Now, recalling that ρ is a real function, we have

σjσ k + δj δk = 2[ρ(Ej)ρ(Ek) ei(Ej−Ek)t/h̄ + ρ(−Ej)ρ(−Ek) ei(Ek−Ej )t/h̄]

σjσ k − δj δk = 2[ρ(Ej)ρ(−Ek) ei(Ej +Ek)t/h̄ + ρ(−Ej)ρ(Ek) e−i(Ej +Ek)t/h̄].

When mj = mk we have Sjk = 1 so that the second term in the numerator disappears,
and since also Ej = Ek, we see that σjσ k + δj δk is time independent, and consequently
there is no flavour oscillation between these. For Fock states and general masses, one has
ρ(E) = 1 when E � 0, and ρ(E) = 0 when E < 0, which gives σjσ k − δj δk = 0, and
σjσ k + δj δk = 2 ei(Ej−Ek)t/h̄.

In general, the denominator is

tr[RPµ] = 2
N∑

j=1

γjT µkTµj .
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Whenever ρ(E) + ρ(−E) = 1, as happens for Fock states and also the thermal states where
ρ(E) = (1 + e−βE)−1, we have γj = 1, and then the unitarity of T means that the denominator
is 2, giving

〈Nλ(t)〉µ = 1

2

N∑
j,k=1

[(σjσ k + δj δk)(1 + Sjk) + (σjσ k − δj δk)(1 − Sjk)]T λjTλkT µkTµj

and our earlier formulae for σjσ k ± δj δk show that this contains both standard oscillations
depending on the energy differences and others depending on Ej + Ek. In the Fock vacuum
state the oscillation formula is consistent with the calculations performed in [29].

Taking λ = µ, the oscillation formula takes on a slightly more compact form

〈Nµ(t)〉
µ

= 1

2

N∑
j,k=1

[(σjσ k + δj δk)(1 + Sjk) + (σjσ k − δj δk)(1 − Sjk)]|Tµj |2|Tµk|2.

6. Non-unitary mixing in a Fock state

We could instead work with � the flavour vacuum. Then there is no need to inject W into
W ⊕ W , so that we have S = 0 and R = 1. This gives

〈Nλ(t)〉µ = tr[FλPµ]

tr[Pµ]
where

Fλ = u∗
f P λuf − v∗

f P λvf

with

uf = afmVtamf + bfmVtbmf vf = af mVtbmf + bf mVtamf .

From this we may show that both sorts of oscillation terms occur in this case too. However,
the total flavour number is given by replacing Fλ by F = u∗

f uf − v∗
f vf , and

〈Nλ(t)〉µ = tr[FPµ]

tr[Pµ]
and in general this depends on the time t. This is essentially a squeezing phenomenon. It
provides a strong reason to be cautious about non-unitary mixing of this kind.
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Appendix

For a thermal state at temperature (kβ)−1 the KMS condition and anticommutation relations
give formally

ωβ[c(w)∗D̃c(z)] = ωβ [D̃c(z)c(eβHDw)∗]

= ωβ [D̃(〈eβHD w, z〉 − c(eβHDw)∗c(z))]

= 〈eβHD w, z〉ωβ [D̃] − ωβ[c(eβHDw)∗D̃c(z)] + ωβ[c(D eβHDw)∗c(z)].
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This can be rearranged as

ωβ[c((1 + eβHD)w)∗D̃c(z)] = 〈eβHDw, z〉ωβ [D̃] + ωβ [c(D eβHDw)∗c(z)]

or, replacing w by (1 + eβHD)−1w,

ωβ[c(w)∗D̃c(z)] = 〈(1 + e−βHD)−1w, z〉ωβ[D̃] + ωβ [c(D(1 + e−βHD)−1w)∗c(z)].

The case D̃ = 1 (and D = 0) gives the usual two-point correlation function

ωβ[c(w)∗c(z)] = 〈(1 + e−βHD)−1w, z〉
so that

ωβ[c(w)∗D̃c(z)] = 〈(1 + e−βHD)−1w, z〉ωβ[D̃] + 〈(1 + e−βHD)−1D(1 + e−βHD)−1w, z〉.
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